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Conclusions
A Newton-Krylov method has been applied to both

two-dimensional and three-dimensional unstructured
Euler codes. Results are presented for various
geometries, and comparisons of solution times have also
been shown for the various methods examined. A
method used to select an appropriate perturbation for the
finite-difference of residuals has also been presented
which yields consistent convergence levels, regardless
of the mesh size.

The Newton-Krylov method converged faster than the
point Gauss-Seidel method in subsonic cases, but
suffered for transonic conditions due to CFL number
constraints for the early iterations until the shock
position stabilized. It was found that this problem could
be overcome by using the Gauss-Seidel scheme in early
iterations and switching to the Newton-Krylov scheme
only after the residual had dropped by a specified
amount. A mesh sequencing approach using the point
Gauss-Seidel method on the coarse grid levels and the
Newton-Krylov method on the finest grid level has also
been shown to be effective. For both of these schemes,
the rapid convergence of the Newton-Krylov method is
obtained in the final stages of the iterative process
without incurring the penalties associated with using this
methodology in the initial iterations.

The approximate method for forming the matrix-
vector product was also compared with an exact method.
The two compared favorably, with a slight reduction in
computer time for the exact method, although this was at
the expense of extra memory requirements.
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Fig. 11. Mesh for Apache helicopter configuration. (249,087 nodes)
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Fig. 10. Pressure distributions for ONERA M6 wing at
several span stations. , .M∞ 0.699= α 3.06°=

Fig. 12. Convergence histories for the Apache helicopter.
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using the Newton-Krylov scheme alone. The hybrid
scheme reduces the time by over a factor of 2 for a 10
order-of-magnitude reduction of the residual. Using
mesh sequencing, further improvements are gained so
that almost a factor of 5 reduction in computer time is
achieved compared to the Newton-Krylov scheme with
no mesh sequencing. By using mesh sequencing, the
computer time required compares favorably with that of
the 3-level W-cycle shown in Fig. 6 and is slightly faster
than using a 3-level V-cycle.

Application to Three Dimensions
Three-dimensional results are shown below for two

applications. The first case is the subsonic flow over the
ONERA M6 wing at a freestream Mach number of 0.699
and an angle-of-attack of 3.0616. The mesh for this
configuration contained 139,356 nodes. Figure 8 shows
the surface grid used to model the wing geometry.

 The convergence histories for the Newton-Krylov
method as well as the point Gauss-Seidel method are
shown in Fig. 9. For the Newton-Krylov method, the
CFL number has been increased from 20 to 10,000 as the
solution converged. For the baseline scheme, the CFL is
increased linearly from 20 to 100 over 100 iterations.
The results in Fig. 9 show a distinct advantage of the
Newton-Krylov scheme over the baseline scheme for
driving the residual towards machine zero in terms of
both computer time and iteration count. The method has
reduced the CPU time necessary to achieve a 7 order-of-
magnitude reduction by about 50 percent. Pressure
distributions at various spanwise locations on the wing
are shown in Fig. 10. The calculations show good
agreement with experimental results.

The last case considered is the three-dimensional
subsonic flow over an Apache helicopter configuration
at a freestream Mach number of 0.27 and an angle-of-
attack of zero degrees. The grid used for this case
consists of 249,087 nodes and is shown in Fig. 11.
Because of asymmetry of the aircraft, both the left and
right sides of the geometry are modelled. Due to memory
requirements, this case was run on the Cray-C90 located
at the NASA Ames Research Center.

Fig. 8. Surface mesh for ONERA M6 wing.

°

For this calculation, a flux-difference splitting scheme
has been used. The CFL number for the Newton-Krylov
calculation is once again increased from 10 to 10,000
based on the reduction in the residual. To provide an
initial solution for the second-order accurate
calculations, 5 iterations using a first order accurate
scheme have first been conducted. The case was also run
using the baseline method, where the CFL number has
been increased linearly from 10 to 200 over 100
iterations. Fig. 12 shows a plot of the residual history
versus iteration count for this case. In the Newton-
Krylov computations, the residual is rapidly reduced by
over 2 orders of magnitude over the 5 first-order
accurate iterations. The residual increases
discontinuously at the point where second order
accuracy is initiated. After switching to second-order
accuracy, the residual decreases by 6 orders of
magnitude over the next 20 iterations, at which time the
computation was stopped. The baseline scheme can be
seen to give very similar results in terms of the computer
time.

Fig. 9. Convergence histories for ONERA M6 wing.
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remaining 7 orders of magnitude. This is due to the fact
that the CFL number remains at a low value until the
shock position stabilized and the flow field approaches
the steady-state solution. For the results from the
baseline scheme, the residual is reduced 10 orders of
magnitude in 700 iterations which required
approximately 400 seconds of computer time. However,
obtaining a 2 order-of-magnitude reduction only
required about 100 seconds whereas the Newton-Krylov
method required about 400 seconds to achieve a
comparable level of convergence, at which point the
residual is then rapidly reduced.

Two methods have been investigated for improving
the performance of the Newton-Krylov method caused
by expending unnecessary resources in the early stages
of the iterative process for transonic conditions. The first
method is to use the point Gauss-Seidel scheme in the
initial stages of the iteration process until the residual is
reduced by a specified amount before switching to the
Newton-Krylov scheme. This method is referred to as
the “hybrid method” in the discussions that follow. The
criterion used to establish the “switch-over” point is a
two order-of-magnitude drop in the residual and is based

Fig. 6. Convergence histories for transonic NACA 0012.
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on the results obtained above that indicate that rapid
convergence will be obtained after this level is achieved.
Here, the CFL number is linearly ramped from 10 to 200
during the point Gauss-Seidel calculations, and then
allowed to increase during the Newton-Krylov portion of
the calculation according to the residual with a
maximum CFL number allowed of 10,000. The second
method investigated is to obtain a partially converged
solution on a coarser mesh which can be then linearly
interpolated to the fine mesh in order to provide an initial
solution on the fine mesh. For this calculation, 60
iterations were performed on a coarse grid of 2,298
points using the point Gauss-Seidel method. These
results were then interpolated to the fine grid (8,578
points), and the iteration process was completed using
the Newton-Krylov method.

Figure 7 shows results obtained with both the hybrid
method and mesh sequencing compared to the Newton-
Krylov scheme. Both the hybrid and the mesh
sequencing results show a significant improvement over

Fig. 7. Convergence histories for the Newton-Krylov
method compared to a hybrid Gauss-Seidel/Newton-Krylov
method and mesh sequencing for 2-D transonic airfoil.
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this case was 10 and was increased in the same method
as the solution converged. In addition, initial CFL values
of 50 and 100 were also tried but diverged. As seen in
the figure, the convergence of the two methods is
identical except very close to machine zero where the
result obtained using the exact matrix-vector product
converged to a slightly lower value. The failure of the
approximate method to reach exactly machine zero has
been observed over a wide range of test cases and is
believed to be caused by numerical inaccuracies in
differencing the residual. However, it should be noted
that when the approximate method does not reach
machine zero, it is typically only one order of magnitude
too high. Also shown in Fig. 4 is the computer time
required for each of the methods. The approximate
method requires slightly more computer time than using
the exact linearizations because the approximate method
requires an extra residual calculation. However, the use
of the approximate method requires that the linearization
of the residual only be stored one time for use in the
preconditioner.

Fig. 4. Comparison of convergence rates obtained using the
approximate and exact methods of forming the matrix-
vector product.

Approx

Exact

As mentioned earlier, the choice of  is crucial to the
success of the Newton-Krylov method when using Eq.
(15) for evaluating the matrix-vector product. The
effects of choosing epsilon are illustrated in Fig. 5.
Results are shown for the coarse, medium, and fine
meshes. The curves labeled with symbols represent the
use of a constant value of  chosen to be the square root
of machine zero   ( ). The curves without
symbols denote results obtained using the present
methodology of choosing  so that the value of  times
the “typical” size of an element of the vector in the
Krylov subspace is the square root of machine zero
( ). It is clear that the latter convention
consistently converges to near machine zero while
choosing a constant  fails to reach this level of
convergence. Note that by choosing  with the current
method, its value increases as the mesh is refined and is
not necessarily small.

The second 2-D case is a transonic NACA 0012
airfoil configuration. The freestream Mach number for
this case is 0.80, and the angle-of-attack is 1.25 .
Results are shown in Fig. 6 for the Newton-Krylov
method compared to the non-multigrid and multigrid
schemes as before. For the Newton-Krylov results, the
matrix-vector product is formed using Eq. (15). The
CFL number has been ramped linearly from 10 to 200
over 100 iterations for the non-multigrid point Gauss-
Seidel computations and ramped from 10 to 200
according to the residual for the multigrid computations.
For the Newton-Krylov results, the initial CFL number
of 10 is increased according to the residual and is limited
to a maximum value of 10,000. The W-cycle and V-
cycle multigrid computations used 5 and 7 subiterations,
respectively. The Newton-Krylov method requires
approximately the same number of iterations as the
multigrid solution using a 3-level W-cycle. However,
examination of the residual shows that approximately
100 iterations are required to obtain the first two order-
of-magnitude reduction in the initial residual after which
only 7 iterations are required to drop the residual the

Fig. 5. Illustration of the effect of choosing . Curves with
symbols denote a constant ; curves without
symbols represent choosing  so that .
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iteration. For the point Gauss-Seidel schemes 15
subiterations were used and the CFL number was also
increased according to the residual but the maximum
value was restricted to be 200. For the multigrid runs,
three meshes consisting of 8,578, 2,298, and 653 nodes
were used and 10 subiterations were used on each grid
level.

The Newton-Krylov method shows the fastest
convergence in terms of the number of iterations. In
terms of CPU time, the results obtained using the 3-level
W-cycle show the best convergence followed by those
obtained with the V-cycle. The Newton-Krylov result
requires less time to achieve a 10 order-of-magnitude
reduction in residual than the non-multigridded baseline
scheme. However, the Newton-Krylov scheme requires
more computer time than the non-multigridded baseline
scheme for the first three orders of magnitude; in many
typical engineering computations, a practical solution
may only require this degree of accuracy.

Newton-Krylov results where the matrix-vector
product is obtained using the method of Ref. 4 are
compared with finite-difference results in Fig. 4. As for
the finite-difference results, the initial CFL number for

Fig. 3. Convergence histories for Subsonic NACA 0012
airfoil.
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over the entire iteration history so that the behavior of
the different residuals can be observed but the actual
level of convergence is identical. Figure 2 shows how
each of the methods used for monitoring convergence
behave over the first twenty iterations. It can be seen that
the residuals based on both mass and  have
converged about one half of an order of magnitude
during the first 20 iterations. This would yield a
corresponding doubling of the initial CFL number. Note
that the residual based on mass achieves a one-half
order-of-magnitude decrease in the residual in only 5
iterations whereas the value of  required 20 iterations
to achieve this same level of reduction. However, in both
cases, the residual decreases relatively slowly over the
initial time steps.

 The residual based on density, however, converges
two orders of magnitude in the first 20 iterations. This
would lead to an increase in the CFL number by a factor
of over 100 times that of the initial value. While it is
important to have as high a CFL number as possible, too
high of a value in the initial stages can be destabilizing.
On the other hand, restricting the CFL number to a low
value will require many iterations to approach
convergence so that the CFL number can be increased. It
has been found through experimentation that using a
measure of convergence based on the rate of change of
density often leads to difficulty if the initial CFL number
is too high because this measure decreases too rapidly in
the initial stages. For this reason, the results shown in the
remainder of the paper are obtained by increasing the
CFL number inversely proportional to the rate of change
in mass.

In Fig. 3, a comparison of the convergence history in
terms of both iteration count and computer time is
shown for several schemes. In this figure, results
obtained using the Newton-Krylov approach are
compared with non-multigrid and multigrid results
obtained using the baseline scheme. For the Newton-
Krylov results, the matrix-vector product is computed
using Eq. (15). Also, an initial CFL number of 10 is used
and is increased as the solution converges with a
restriction to the maximum value of 10,000. Initial
values for the CFL number of 100 as well as 50 were
attempted but the solution diverged after the first

Fig. 2. Behavior of various methods of monitoring
convergence.
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reasonably small value and is allowed to increase as the
solution converges so that a more globally convergent
scheme is obtained. The rate at which the CFL number is
increased can have a significant impact on convergence,
robustness, and efficiency.

Three methods have been considered for monitoring
the convergence. The first two methods are based on the
norms of

, (18)

and

. (19)

These correspond to the time rate-of-change of mass and
density respectively, where the integration is carried out
over the surface of each control volume and includes
only the contribution from the continuity equation.

The last indicator for increasing the time step as the
solution converges is the change in the discrete values of
the density, . Unlike the previous methods, although
a converged solution will have a  of machine zero, its
initial value depends on the initial time step. It is
conceivable that for very low initial values of the CFL
number, a correspondingly very low value of this
parameter is obtained. In this case, its value would never
decrease in relation to its initial value so that there would
be no increase in the CFL number as the solution
converged.

To illustrate the convergence behavior of each of
these methods, the subsonic test case described earlier is
used. In each case, the baseline scheme is used in which
the CFL number is increased linearly with the iteration
count, independent of the level of convergence. In this
way, the solution variables are the same for each method

Fig. 1. Near-field view of grid for NACA 0012 airfoil.

Rmass F1 n̂⋅( ) dΩ∫°–=

Rdens
1
V
--- F1 n̂⋅( ) dΩ∫°–=
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and is similar to that of the Gauss-Seidel scheme.
Additional storage is required for saving the vectors in
the Krylov subspace. The storage required for these
vectors is the dimension of the Krylov subspace times
the number of unknowns in the mesh. For example, with
20 search directions in a three-dimensional application,
this would require 100 storage locations for each node.
However, the primary storage is dictated by the
preconditioner which requires that a block 5x5 (3-D)
sub-matrix be stored for every non-zero element in the
large matrix. For the meshes used in this work, there are
roughly 14 edges that connect to each node so that the
total storage (including the diagonal) for the non-zero
elements in the matrix is about 375 times the number of
nodes in the mesh. When evaluating the matrix-vector
product by Eq. (17), the linearizations of the fluxes
requires an additional amount of storage equal to that of
the preconditioner, so that a total of 750 storage
locations are required.

Multigrid Acceleration
For two-dimensional applications, multigrid

acceleration has been incorporated into the code and is
described in Ref. 5. This option can be used in
conjunction with the Gauss-Seidel scheme or the
Newton schemes. In addition, mesh sequencing can be
used in which an initial solution is first obtained on a
coarse grid and then linearly interpolated to a finer grid
where it is used as an initial condition. These options
provide an additional degree of freedom for reducing the
total time required to converge to a steady state.

Results
Results are shown below which compare the relative

efficiency of various schemes. For all these results, the
scheme in which the linear system is solved using the
point iterative method is referred to as the baseline
scheme. For the results obtained with GMRES, 20
search directions are used and the tolerance for the linear
system is such that the residual for the linear system is
reduced by a maximum of three orders of magnitude. If
this tolerance was not met, the algorithm was not
restarted. The choice of these parameters is based on
numerical experiments. It should be noted that while the
tolerance could often be relaxed, which required less
computer time, this approach was found to be less robust
than using the tighter tolerance when using very large
CFL numbers. Unless otherwise noted, all the results
have been obtained on the Cray-YMP located at the
NASA Langley Research Center.

Two-Dimensional
The first test case is a subsonic flow over an NACA

0012 airfoil. A near-field view of the grid used for this
calculation is shown in Fig. 1 and contains 8,578 grid
points with 256 of them located on the surface of the
airfoil. The configuration was run at a freestream Mach
number of 0.63, and an angle-of-attack of 2 .

Obtaining Newton-type convergence with the present
schemes requires the use of very large CFL numbers so
that the linearization term associated with the time
derivative of the dependent variable vanishes, and
Newton’s method is obtained. However, too large an
initial value of the CFL number can cause the solution to
diverge. Therefore, for the applications using the
Newton schemes, the CFL number is started at a

°
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influence of nodes directly adjacent to the current node
are included. With this approximation, Newton’s
method can only be obtained when a first-order spatial
residual is used. In addition, this procedure can be slow
to converge at large CFL numbers where the diagonal
contribution from linearizing the time derivative of the
dependent variables is small. For this reason, when this
scheme is used, the maximum CFL numbers are
typically restricted to numbers on the order of 100. The
linearization of the residual is computed and stored
along each edge and requires two matrices for each edge.
In two dimensions, this requires 32 storage locations
associated with each edge while in three dimensions, 50
storage locations are required.

In the remainder of this paper, this scheme is referred
to as the "baseline" scheme. The performance of other
schemes described below will be compared relative to
this scheme.

Another method which can be used to solve the linear
system of equations at each time-step is the Generalized
Minimal Residual (GMRES) method.14 The basic
outline of the structure of the GMRES algorithm below
is taken directly from Ref. 14.

To solve the system :

1. Start: Choose an initial guess, , for the solution of
the linear system and compute  and

.

2. Iterate: For  until satisfied do:

, (9)

, (10)

, (11)

and . (12)

3. Form the approximate solution:

, (13)

    where  minimizes the following functional:

. (14)

The symbol  represents the first column of the
 identity matrix, and  is an upper-

Hessenberg matrix with an additional row whose only
nonzero element is  in the  position. The
value of  is simply the norm of the initial residual

.
 Note from equations (9) and (10) that this procedure
does not require the explicit inversion of , but only
that the product of  with vectors  be computed.
While the full matrix corresponding to the higher-order
linearization of the residual can be formed and stored,
the memory requirements are restrictive, particularly for
three-dimensional flows. Therefore, instead of
calculating and storing the full matrix, the matrix-vector

Ax b=

x0

r0 b Ax0–=

v1

r0

r0

---------=

j 1 2 … k, , ,=

hi j, Avj vi,( ) i, 1 2 … j, , ,= =

v̂j 1+ Avj hi j, vi

i 1=

j

∑–=

hj 1 j,+ v̂j 1+=

vj 1+

v̂j 1+

hj 1 j,+

-------------=

xk x0 Vkyk+=

yk

J y( ) βe1 Hky–=

e1

k 1+( ) k 1+( )× Hk

hk 1 k,+ k 1 k,+( )
β

β r0≡

A[ ]
A[ ] vj

product  in equations (9) and (10) can be
approximated as6

. (15)

where  is the residual for the Euler equations
evaluated using perturbed state quantities and  is a
scalar. As will be shown, it has been found effective to
set the value of  so that the product of  with a
"typical" element in  is the square root of machine
zero, i.e.,

(16)

where  is the value of "machine zero" for the
hardware being used (typically on the order of ), and

 is the RMS value of the elements in .
Replacing the matrix-vector product  with a finite-

difference approximation (15) of residuals discretized to
second-order yields vectors  that correspond to those
of the full second-order Jacobian but circumvents the
need to compute and store the matrix. For this reason,
this method will yield rapid convergence, similar to a
Newton-type scheme. An example of using this
approach for structured grids is given in Ref. 12 for a
two-dimensional incompressible flow. For unstructured
grids, Ref. 11 describes a scheme exploiting Eq. 15 for
two-dimensional applications. In this reference, a
diagonal preconditioner was used, as were relatively low
CFL numbers, and the resulting convergence did not
approach that of Newton’s method.

An alternative method for computing the exact
matrix-vector product for the higher-order linearization
of the residual has recently been developed by Barth.4

This scheme has the advantage that the linearization of
the second-order residual is exact but the storage
associated with this scheme is the same as that required
when using linearizations of the lower-order residual
which includes only the influence of the data at the
nearest neighboring nodes. In Ref. 4, it is shown that the
product  can be calculated exactly as

. (17)

where  and  refer to data obtained on the left and
right sides of the face, respectively and is obtained using
linear reconstruction. This approach to forming the
matrix-vector products is also explored in this study,
although heavier emphasis is given to the finite-
difference technique.

 Obtaining efficient results using GMRES requires the
use of a preconditioner. In this study, an incomplete LU
decomposition of the first-order matrix is used with no
fill-in allowed [ILU(0)].10 In addition, the bandwidth of
the matrix is minimized using a reverse Cuthill-McKee
algorithm.8 The forward- and back-substitution process
has been fully vectorized with a level-scheduling
algorithm.15 This is accomplished by grouping all the
edges that contribute to the nodes in a current level, and
coloring the edges to allow vectorization.3,18

The memory requirement for the Newton-Krylov
approach when using the finite-difference matrix-vector
products is primarily attributable to the preconditioner

Avj

Avj

R Q εvj+( ) R Q( )–
ε

--------------------------------------------------≅

R Q εvj+( )
ε

ε ε
vj

εvj εmach≅

εmach
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14–
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multigrid acceleration can be used. Further details can be
found in Refs. 1 and 5.

Solution Methods for Linear System
In a second-order implicit unstructured formulation, a

large system of linear equations must be solved in order
to advance the solution from one time-step to the next:

(5)

where

(6)

is the residual,  is a large sparse nonsymmetric
matrix

, (7)

and  represents the change in conserved variables.
The overall size of the system is the number of nodes in
the mesh times the number of unknowns stored at each
grid point (four in 2-D, five in 3-D).

If the complete linearization of the residual is
included in , then as , this process
approaches Newton’s method. However, the inversion
of this linearized system by direct means requires a
significant amount of memory, as well as CPU time, and
is infeasible for large 3-D computations.

A simplification which significantly reduces the
memory requirements for Newton’s method is to replace
the linearization of the residual with a linearization of a
first-order accurate scheme and solve the resulting
system with either an incomplete LU decomposition,10

an iterative scheme such as a point Gauss-Seidel
method, or a conjugate-gradient-type method such as
GMRES14. However, with these simplifications,
Newton-type convergence is lost.

The first method used in this study for solving the
linear system of equations is a point iterative method
described in Refs. 1 and 2. Here, the solution of the
linear system is obtained by a relaxation scheme in
which  is obtained through a sequence of
iterates  which converge to . In this
scheme, the grid points are updated so that the odd and
even numbered points are solved for alternately. In this
way, a fully vectorizable Gauss-Seidel type of scheme is
obtained. This can be written as

(8)

where  is the most recent value of  and
will be at subiteration level  or  depending on
whether the current node being updated is even or odd.
Here,  and  represent the diagonal and off-
diagonal blocks of the matrix , and  is the
vector of residuals at each grid point. When using this
scheme, the linearizations of the residual are
approximated by using the linearization of a first-order
spatially accurate residual. In this way, only the
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MG Multigrid
NAS Numerical Aerodynamic Simulator
N-K Newton-Krylov method

Conserved state vector
Residual for a control volume

RMS Root mean square
Velocity normal to the boundary of the
control volume
Cell volume
A constant vector
Entries in
Number of search directions
Unit normal to a cell face

, , and  components of a unit normal
Pressure
Time
Cartesian velocities in the , , and
directions
Search direction
Solution vector

, , Cartesian coordinates
Ratio of specific heats, taken as 1.4
Value used in perturbing the solution
Machine zero
Spanwise location
Density
Boundary of the cell

The Euler Equations
The 3-D time-dependent Euler equations for a perfect

gas are given by

(1)

where

       and . (2)

The component of velocity, , in the direction of the
outward-pointing unit normal to a cell face is:

. (3)

The equations are closed with the equation of state for a
perfect gas:

. (4)

Solution Algorithm
The flow solver used for this study is an upwind,

implicit algorithm in which the fluxes are obtained using
either a flux-difference-splitting scheme,13 or a flux-
vector splitting scheme.17 For the current algorithm, a
node based scheme is used in which the variables are
stored at the vertices of the grid and the equations are
solved on non-overlapping control volumes surrounding
each node. The solution at each time step is obtained
using a backward-Euler time-differencing scheme and
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APPLICATION OF NEWTON-KRYLOV
METHODOLOGY TO A THREE-DIMENSIONAL

UNSTRUCTURED EULER CODE
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Summary

A Newton-Krylov scheme is applied to an unstructured Euler code in both two and three
dimensions. A simple and computationally efficient means of differencing residuals of
perturbed solutions is presented that allows consistent levels of convergence to be obtained,
independent of the mesh size. Results are shown for subsonic and transonic flow over an
airfoil that indicate the Newton-Krylov method can be effective in accelerating convergence
over a baseline scheme provided the initial conditions are sufficiently close to the root to
allow the fast convergence associated with Newton’s method. Two methodologies are
presented to accomplish this requirement. Comparisons are made between two methods for
forming the matrix-vector product used in the GMRES algorithm. These include a matrix-
free finite-difference approach as well as a formulation that allows exact calculation of the
matrix-vector product. The finite-difference formulation requires slightly more computer
time than the exact method, but has less stringent memory requirements. Lastly, three-
dimensional results are shown for an isolated wing as well as for a complex-geometry
helicopter configuration.

*Graduate Student, Virginia Polytechnic Institute and State
University, Blacksburg, VA  24060, Student Member, AIAA.

†Senior Research Scientist, NASA Langley Research Center,
Hampton, VA 23681, Aerodynamic and Acoustic Methods
Branch, Fluid Mechanics and Acoustics Division, Senior
Member AIAA.

‡Professor of Aerospace & Ocean Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, VA
24060, Associate Fellow, AIAA.

§Associate Professor of Computer Science, Old Dominion
University, Norfolk, VA 23529. Also, Senior Research
Associate at ICASE, Hampton VA 23681, Member AIAA.

Copyright © 1995 by Eric J. Nielsen. Published by the
American Institute of Aeronautics and Astronautics, Inc. with
permission.

Introduction
Significant advancements have taken place over the

past decade in the area of computational fluid dynamics,
and solutions involving very complex 3-D
configurations have become a reality. As geometric
configurations get more detailed, the computational
grids used to discretize the domain naturally become
more complicated. The use of unstructured grids has
some advantages over structured grids in dealing with
these complicated geometries. Even in unstructured
grids, the number of grid points needed to obtain
accurate solutions is often very large, resulting in a large
system of coupled nonlinear equations that needs to be
solved. The solution process requires a large amount of
computing time, and therefore it becomes advantageous
to make use of the most efficient algorithms available.

One such algorithm for solving nonlinear systems is
Newton’s method. Unfortunately, the storage and
operation cost involved in exactly solving the linear
system of equations required at each time step is
prohibitively expensive. An alternative approach is the
Newton-Krylov method which requires neither the
storage nor the inversion of the full matrix to achieve
superlinear or even quadratic convergence. This is
accomplished by using a conjugate-gradient type of

algorithm in which the matrix-vector products are
replaced with a finite-difference approximation. This
algorithm has previously been successfully applied by
several researchers using structured grids (e.g.
Refs. 7, 12, 19), as well as to a two-dimensional
unstructured Navier-Stokes code11, and is now examined
as a tool for solving three-dimensional flows.

The primary motivation for investigating the use of
the Newton-Krylov method is to reduce the CPU time
necessary to achieve a fully-converged solution to a
given problem. By matching a second-order right-hand
side with a second-order left-hand side, the method is
expected to converge very rapidly, saving a significant
amount of computing time.

In this study, the Newton-Krylov method is examined
in both two and three dimensions to investigate its
efficiency in accelerating convergence relative to
currently used solution techniques. Computing time is
compared with a baseline scheme, and suggestions are
made to improve performance in cases that exhibit slow
convergence in the initial stages of the iteration process.
In addition, comparisons are made between the finite-
difference technique and an exact method for evaluating
matrix-vector products.

Nomenclature
          Left-hand side matrix in implicit

formulation
Pressure coefficient

CFL Courant-Friedrichs-Lewy number
CPU Central processing unit

Total energy per unit volume
Fluxes of mass, momentum, and energy

GMRES Generalized Minimal Residual method
G-S Gauss-Seidel

Source term
Upper Hessenberg matrix
Identity matrix

ILU Incomplete LU decomposition
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